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SUMMARY 

E lec t r i c  drag i s  defined as t h e  difference between t h e  drag of a charged 
satel l i te  and the  drag of an iden t i ca l  s a t e l l i t e  with no charge. The drag 
increment i s  a consequence of t he  e f fec t ive  increase i n  s i ze  of the  s a t e l l i t e  
resu l t ing  from sca t te r ing  of ambient ions by the  s a t e l l i t e  po ten t ia l .  Experi- 
mental r e s u l t s  of t h i s  invest igat ion,  wherein e l e c t r i c  drag w a s  measured on 
conducting spheres i n  a streaming mercury plasma, have shown t h a t  e l e c t r i c  
drag can be a s igni f icant  portion of t he  t o t a l  drag if t he  f r ac t ion  ionization 
i s  suf f ic ien t ly  high. To properly estimate e l e c t r i c  drag of s a t e l l i t e s  it is  
necessary t o  account both f o r  the  ion surface co l l i s ion  and f o r  the  shielding 
e f f ec t  of the  ion sheath around the  s a t e l l i t e  surface.  Among the  several  con- 
f l i c t i n g  theories  avai lable ,  these conditions are  most near ly  f u l f i l l e d  by the  
theory of Jastrow and Pearse. 
of t h i s  investigation, t he  drag of 1.9- and 2.5-cm-diameter spheres i s  pre- 
dicted t o  within 10 percent of the  experimental r e s u l t s .  Scaling parameters 
developed herein allow the  r e l a t i o n  of the  present experimental r e s u l t s  t o  
s a t e l l i t e  conditions.  The scal ing parameters and an ex is t ing  simple ion 
sheath theory are  used as guides i n  developing an approximate equation t h a t  
estimates e l e c t r i c  drag t o  reasonable accuracy over scal ing parameter ranges 
of p rac t i ca l  i n t e r e s t .  

Upon using t h i s  theory and the  tes t  conditions 

INTRODUCTION 

Earth s a t e l l i t e s  o rb i t  i n  a medium composed of ions and electrons,  i n  
equal numbers, and neut ra l  atoms. A s a t e l l i t e  i n  such a medium w i l l  acquire 
a net negative charge due t o  the  higher mobility of the  e lec t rons .  To date ,  
s a t e l l i t e  po ten t ia l  measurements have ranged from -0.15 t o  -4 v o l t s  ( r e f s .  1 
and 2, respec t ive ly) .  
t he  s a t e l l i t e  i n  addition t o  those caused by gravi ty ,  radiat ion pressure, and 
impacts with neut ra l  p a r t i c l e s .  The charge-associated drag forces  r e su l t  
from the  sca t te r ing  of atmospheric ions and interact ion with the  ea r th ' s  
magnetic f i e l d .  Since s a t e l l i t e  drag has bearing on the  s a t e l l i t e  l i fe t ime 
and on the  determination of atmospheric densi ty  from observations of the 
o r b i t a l  decay r a t e ,  the  importance of charge drag r e l a t i v e  t o  other drag 
forces  must be assessed. 

June 1964, pp. 1148-1151. 

This negative charge gives r i s e  t o  several  forces  on 

- - - - -  - _  . -  

'A rgsumk of t h i s  paper w a s  published i n  the  AIAA Journal,  vol. 2, 



Several theor ies  have been published ( r e f s .  3-10) which d i f f e r  by four 
orders of magnitude i n  t h e i r  prediction of e l e c t r i c  drag. Comprehensive 
reviews of most of these theor ies  are  given i n  references 4 and 11. 
differences i n  predicted drag a re  a r e s u l t  of unresolved questions as t o  the  
proper choice of t heo re t i ca l  model. The primary differences between models 
involve the  plasma sheath t h a t  forms near the  s a t e l l i t e  surface and the  
d e t a i l s  of the  ion-surface in te rac t ion .  In  view of t he  large differences of 
opinion regarding the  proper formulation of t he  theo re t i ca l  model and the  
r e su l t i ng  orders-of -magnitude differences i n  estimated e f f ec t  , it w a s  decided 
t o  conduct a laboratory-scale experimental invest igat ion of the  e f f ec t  of 
s a t e l l i t e  charge on drag. The e f f ec t  of t he  ea r th ' s  magnetic f i e l d  on the  
drag of a charged s a t e l l i t e  was not  considered i n  t h i s  investigation because, 
f o r  most cases i n  space, induction drag i s  expected t o  be s m a l l  compared t o  
e l e c t r i c  drag ( r e f .  6 ) .  
scaled out of proportion t o  the  magnetic f i e l d  so t h a t  the  magnetic e f f ec t s  
a re  considered t o  be small enough not t o  inval idate  the  present r e s u l t s .  

The large 

In the  laboratory t e s t s  the  e l e c t r i c  f i e l d  w a s  

Laboratory simulation of s a t e l l i t e  conditions required a plasma beam 
having ion mean-free paths much larger  than the  model dimensions, and a 
directed ion veloci ty  much la rger  than the  ion thermal veloci ty  but much l e s s  
than the  electron thermal ve loc i ty .  These conditions were met by an apparatus 
which provided a broad beam of singly ionized mercury plasma operable over a 
range of ion energies from 60 t o  250 ev .  
ing the  drag force act ing on spherical  conducting models a s  the  model poten- 
t i a l  was var ied.  Measurements were carr ied out f o r  two model diameters and 
several  ion energies .  

The experiment consisted of measur- 
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perpendicular dis tance between flow axis  of symmetry and free-stream 
ve loc i ty  vector 
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e lec  t ron temperature 

ion veloci ty  

sa te  Ll i te  veloci ty  

thickness of simplified ion sheath 

inc l ina t ion  of ion radius vector from the ax is  of symmetry 

Debye radius , .\lkTe/h-me2 

charge density 

dimensionless parameter , 
AD kT, - - 

value of 0 at  body surface,  a 3 
AD kTe 

e l e c t r i c a l  po ten t i a l  re fe r red  t o  f r e e  space 

value of cp. a t  body surface 

THEOmTICAL CONSIDERATIONS 

Physical Description of E lec t r i c  Drag 

The s a t e l l i t e  environment i s  shown conceptually i n  f igure  1. For 
a l t i t u d e s  of i n t e r e s t  t he  s a t e l l i t e  o r b i t s  i n  a medium composed of ions, 
e lectrons,  and neu t r a l  atoms. The prevail ing types of ions and atoms depend 
on the  a l t i t u d e  ( r e f s .  1 2  and 1 3 ) .  A t  low a l t i t udes ,  they a re  primarily 
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oxygen; at  intermediate a l t i t udes ,  helium; and a t  very high a l t i t udes ,  
hydrogen. 
with the  time of day, time of year, and so la r  a c t i v i t y  ( r e f .  13 ) .  
f o r  a l l  conditions of i n t e re s t  t he  dens i t i e s  are  su f f i c i en t ly  low t h a t  f r e e -  
molecule flow preva i l s .  The most probable ve loc i t i e s  of t he  pa r t i c l e s  are  
indicated i n  a r e l a t ive  manner on f igure  1 by the  lengths of the  arrows. The 
average random thermal ve loc i t i e s  of oxygen and helium ions and atoms are  
much less than s a t e l l i t e  veloci ty  and w i l l  be neglected i n  the  subsequent 
analysis .  In  the  region where hydrogen ions and atoms are  dominant, thermal 
veloci ty  i s  comparable t o  s a t e l l i t e  ve loc i ty  and thus cannot be neglected. 
For t h i s  reason the  subsequent t heo re t i ca l  analysis  w i l l  be applicable only 
t o  a l t i t u d e s  below the  hydrogen band. The electron thermal veloci ty  i s  
directed along h e l i c a l  paths about t he  ea r th ' s  magnetic l i n e s  and i s  much 
larger  than s a t e l l i t e  ve loc i ty .  

The boundary heights and the  dens i t i e s  vary i n  a complicated manner 
However, 

Because the  electron veloci ty  i s  much higher than the  ion veloci ty ,  a 
net negative current w i l l  f l o w  i n i t i a l l y  from the  ambient atmosphere t o  an 
uncharged s a t e l l i t e .  The flow w i l l  continue u n t i l  the  s a t e l l i t e  accumulates 
an equilibrium charge suf f ic ien t ly  negative t o  r epe l  enough low-energy elec- 
t rons tha t  the  t o t a l  e lectron f l u x  t o  the  s a t e l l i t e  surface j u s t  equals the  
ion f l u x  t o  the  surface.  The equilibrium condition i s  a l te red  somewhat by 
photoejection of e lectrons by solar radiat ion and possibly by antenna systems 
which may loca l ly  energize electrons t o  a l l o w  them t o  proceed t o  the surface 
against  l a rger  negative poten t ia l s .  For the  purposes of the present report ,  
no attempt w i l l  be made t o  estimate the  s a t e l l i t e  po ten t i a l  ( t h i s  has been 
done in  r e f s .  6 and 9 > ,  but ra ther  a negative po ten t i a l  w i l l  be assumed to 
e x i s t .  The authors of references 1 and 2 report ,  from ac tua l  measurements 
aboard s a t e l l i t e s ,  po ten t ia l s  of -0.15 and -4 vo l t s ,  respect ively.  

To define exp l i c i t l y  the term e l e c t r i c  drag, pa r t i c l e  t r a j e c t o r i e s  
r e l a t ive  t o  the  s a t e l l i t e  a re  shown i n  idealized form i n  f igure  2 f o r  both a 
charged and an uncharged s a t e l l i t e .  For the uncharged s a t e l l i t e  shown i n  
f igure 2 ( a ) ,  both the  ions and atoms appear t o  stream along s t r a igh t ,  p a r a l l e l  
l i nes  as the  s a t e l l i t e  sweeps them up. Thus, the drag i s  influenced only by 
impact and re f lec t ion  of the  pa r t i c l e s  within a cross section having the  same 
diameter as the  body. If the  s a t e l l i t e  acquires a negative poten t ia l  as 
shown in  f igure  2 (b ) ,  the  ions a re  deflected toward i t s  surface a s  they come 
within the  region of influence of  t h i s  po ten t i a l .  Now the  e f fec t ive  cross 
section f o r  ion co l l i s ions  i s  increased as indicated,  and the  drag of the  
s a t e l l i t e  i s  increased. Other ions t h a t  a re  def lected but do not impact a l so  
cause drag on the s a t e l l i t e  through momentum t r ans fe r .  A t h i r d  f ac to r  t h a t  
can increase the  drag concerns the  impacting ions tha t  now s t r ike  the  surface 
with more momentum because they have been accelerated by the  surface poten- 
t i a l .  This increase i n  ion momentum does not d i r ec t ly  a f f ec t  the  drag upon 
impact because it i s  exactly counteracted by the  momentum acquired by the  
s a t e l l i t e  upon accelerating the  ions.  However, any ions which rebound do so 
(as neut ra l  pa r t i c l e s )  with a momentum proportional t o  the  increased impacting 
momentum, and a net  drag increment can r e s u l t .  The difference i n  drag between 
(a )  and ( b )  i n  f igure  2 which includes a l l  three  of these e f f e c t s  i s  herein 
defined t o  be the  e l e c t r i c  drag. 
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Elect ric-Drag Theories 

General review. - The complexity of the  electr ic-drag problem has led a l l  
authors of e lectr ic-drag theor ies  t o  make some rather  gross assumptions in  the  
formulation of t h e i r  t heo r i e s .  Because it i s  not possible t o  obtain closed- 
form solutions if  the  ion-surface co l l i s ions  are considered i n  d e t a i l ,  some 
authors have chosen t o  circumvent t h i s  aspect of t he  problem. 
( r e f .  4), f o r  example, has chosen t o  regard t h e  s a t e l l i t e  as a "test par t ic le"  
t h a t  passes through a f i e l d  of atmospheric ions and sca t t e r s  them without 
d i r e c t  surface co l l i s ions .  
t he  Chopra theory generally gives the  highest estimates of e l e c t r i c  drag as 
shown i n  f igure  3. 
theory does not allow f o r  shielding of ions from the  s a t e l l i t e  charge by 
ambient e lectrons.  
range. Wyatt ( r e f .  5 )  a l so  circumvents t he  surface co l l i s ion  problem 
although he allows f o r  shielding e f f e c t s .  matt assumes the  body t o  be com- 
p le te ly  permeable t o  both ions and electrons.  The r e s u l t  both of neglecting 
hard co l l i s ions  of ions with the  surface and of l imit ing the  extent of the  
s a t e l l i t e  po ten t ia l  f i e l d  by shielding i s  t o  estimate a negl igible  e l e c t r i c  
drag. 
of t he  ion-surface co l l i s ions .  Since the  Jastrow-Pearse theory w a s  found 
t o  agree substant ia l ly  with the  present experimental r e s u l t s ,  it w i l l  be 
discussed in  some d e t a i l  i n  t he  following section. 

Chopra 

Even though the  surface co l l i s ions  are neglected, 

The high drag values r e su l t  from the  f a c t  t h a t  t he  Chopra 

Thus the  s a t e l l i t e  po ten t ia l  i s  e f fec t ive  over a long 

Jas t row and Pearse ( r e f .  3) were the  f i rs t  t o  account, f o r  t he  d e t a i l s  

Jastrow-Pearse theory .- The theo re t i ca l  model f o r  the  Jastrow-Pearse 
theory i s  shown i n  sketch ( a ) .  The s a t e l l i t e  i s  assumed t o  be charged 
negatively.  The negative charge 
repels  a l l  but t he  highest energy 
electrons so t h a t  a sheath region 
def ic ien t  i n  e lectrons i s  formed 
about the  surface.  The sheath i s  
assumed t o  be spherically symmetric 
f o r  mathematical s implici ty .  In  
r e a l i t y ,  the  high veloci ty  of  the  
s a t e l l i t e  d i s t o r t s  the sheath some- 
what on the  f ront  side and creates  
a wake def ic ien t  i n  ions at the  
r e a r .  A fur ther  assumption i s  t h a t  
the  ion density i s  constant 
throughout the  sheath and equal t o  
the  ambient ion densi ty .  Far from 
the  s a t e l l i t e ,  t he  electron density 
i s  equal t o  the ion density,  and i n  
the  sheath the electron density i s  
assumed t o  adjust  i t s e l f  according 
t o  the  Boltzmann d i s t r ibu t ion .  

Positive ion 

ni =nw 

n,=nw \ +  
\ 

Sheath / \ L  -+\ 

/' 

\ 
- 
""+ +', 

L n e = n m  exP(e#/kTe) 

Sketch ( a )  
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Evaluation of e l e c t r i c  drag by the  Jastrow-Pearse theory i s  car r ied  out 
i n  three s teps .  F i r s t  , the  poten t ia l  var ia t ion  through the  sheath region i s  
evaluated. The movement of ions through the  sheath i s  not considered since 
the  assumption of constant ion density implies t h a t  ion motion has no e f f ec t  
on the  po ten t i a l  f i e l d .  The second s tep  i s  t o  compute numerically a network 
of ion t r a j e c t o r i e s  through the  poten t ia l  f i e l d  obtained from t h e  f i r s t  s tep .  
This es tab l i shes  t h e  ion f lux and angle of incidence a t  each point on the  sat- 
e l l i t e  surface.  Final ly ,  the  momentum t r ans fe r ,  and hence the  drag, i s  com- 
puted from known, or  assumed, re f lec t ion  cha rac t e r i s t i c s  a t  t he  surface.  The 
drag due t o  the  sca t te r ing  of ions t h a t  do not s t r i k e  the  surface i s  a l s o  
evaluated and can be the  dominant e lectr ic-drag e f f ec t  f o r  bodies small enough 
t h a t  the  sheath thickness 6 i s  large compared t o  t he  radius a .  

The poten t ia l  i s  determined from Poisson's equation, 

0% = -4np 

where p, t he  charge density,  i s  given by the  following equation: 

When equations (1) and (2 )  are  combined, Poisson's equation becomes 

2 
V Cp = -4mwe [ 1 - exp( eCp/kTe) 1 

Introducing the  dimensionless var iables  @ and R, defined as 

and 

where 

= ,/kTe/4me2 

y i e  Ids the  following dimensionless d i f f e r e n t i a l  equation : 

- -  - R[exp( @/R) - 11 d2Q 
dR2 

Equation ( 5 )  w a s  solved numerically on the IBM 7090 computer with the  
following boundary conditions : 

( 3 )  

( 5 )  

Cp = (Po at  r = a  
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and 
c p = O  at  r = w  

Once the  po ten t i a l  d i s t r ibu t ion  has been determined, the  t r a j e c t o r i e s  of 
individual  ions a re  obtained by integrat ion of the  force equation, F = -eV(p, 
through the  sheath ( see ,  e .g . ,  r e f .  14) . 
t r a j e c t o r i e s .  

Figure 4 shows a typ ica l  s e t  of 

The f i n a l  s tep i n  the  drag estimation i s  t o  compute the  momentum t r ans fe r  
r a t e  from both those ions which impact with the  surface and those ions which 
a re  def lected around the  surface.  The drag due t o  the  nonimpacting ions i s  
e a s i l y  computed from t h e  momentum change of the  ions i n  the  drag d i rec t ion  as 
they a re  def lected i n  passing the  sphere. Schamberg ( r e f .  15) t r e a t s  the ion 
impact react ion i n  d e t a i l .  In the  hard co l l i s ion  process, the impact and the 
r e f l ec t ion  can be considered as two separate s teps .  Each ion, upon impact 
with the  surface,  exchanges the  r e l a t ive  free-stream momentum, mvs, with the  
s a t e l l i t e  regardless of the  impact point on the surface.  The momentum 
imparted t o  the  s a t e l l i t e  by r e f l ec t ion  depends on the impact point ,  the  angle 
of incidence, the  type of r e f l ec t ion ,  the degree of momentum accommodation, 
and whether t he  incident ion r e f l e c t s  as an ion or as a neu t r a l .  It i s  gener- 
a l l y  believed t h a t  the  ions a re  neutral ized on impact so  t h a t  they w i l l  prob- 
ably be re f lec ted  as neu t r a l  atoms. The point of impact and the  angle of 
incidence are  known from the t r a j ec to ry  calculat ions.  However, the  type of 
r e f l ec t ion  and the  degree of momentum accommodation a re  not generally predict-  
ab le .  
current state-of - the-ar t  on accommodation coef f ic ien ts  . The r e f l ec t ion  prob- 
lem i s  fu r the r  complicated by the  existence of sputtered p a r t i c l e s .  Wehner 
( r e f .  18) shows t h a t  t h e  contribution of sputtered p a r t i c l e s  t o  the  drag can 
exceed the  contribution of re f lec ted  ions.  In l i e u  of r e l i ab le  information on 
momentum accommodation and on the  type of re f lec t ion ,  the  assumption i s  made 
t h a t  the  ion momentum i s  absorbed without r e f l ec t ion ,  or i s  f u l l y  accommodated 
t o  a cold surface,  a condition herein referred t o  as f u l l  momentum accommoda- 
t i o n .  
t h a t  such an assumption i s  reasonable f o r  the model surfaces of the  present 
invest igat ion.  For f u l l y  accommodating surfaces,  the  r a t i o  of the  impacting 
ion drag of a charged .sphere t o  t h a t  of an uncharged sphere i s  simply 

Hurlbut ( r e f .  16) and Wachman ( r e f .  17) give good summaries of the 

The experimental r e s u l t s  presented i n  references 18 and 19 indicate  

where pg 
( f i g .  2 ( b ) ) .  

i s  the  grazing impact parameter, or ef fec t ive  cross-section radius 

Extensions have been made t o  the  Jastrow-Pearse theory by Hohl and Wood 
( r e f .  6 )  and by Davis and H a r r i s  ( r e f .  7 ) .  
Hohl and Wood paper i s  the  inclusion of the  e f f ec t  of the  e a r t h ' s  magnetic 
f i e l d  on s a t e l l i t e  drag. A l s o ,  i n  t h i s  paper the  Boltzmann d i s t r ibu t ion  f o r  
the  electron number densi ty  i n  the sheath i s  modified t o  account f o r  the f a c t  
t h a t  e lectrons a re  probably absorbed by the  surface on impact. This can be an 
important correct ion when the  parameter (-ev0/kTe) i s  of the  order 1 or l e s s ,  

The major contribution i n  the  
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but t he  correction i s  small when t h i s  parameter i s  large,  as it w a s  f o r  the  
conditions of t he  present experimental invest igat ion.  Since f o r  the  present 
program the  electron absorption e f f ec t  i s  expected t o  be s m a l l  and the  mag- 
ne t i c  f i e l d  i s  negl igibly s m a l l ,  the  Jastrow-Pearse theory and the  Hohl-Wood 
theory should agree very c lose ly .  I n  reference 7 t he  assumption of constant 
ion density i s  relaxed by an i t e r a t i v e  procedure by which the  ion density 
approaches i t s  proper d i s t r ibu t ion .  

Scaling Relations 

A s  i s  usual ly  the  case, it w a s  not possible i n  t h i s  investigation t o  
duplicate i n  the  laboratory the  exact conditions encountered by s a t e l l i t e s  
i n  space. The relat ionships  between probable space conditions and those in  
the  present experimental investigation are shown in t he  following l ist :  

Paramet e r 

Ion species 

Ion densi ty  

Ion energy 
(relative t o  surface) 

Ion ve loc i ty  

Electron thermal energy 

Mean-f ree path 

Debye radius 

Body diameter 

Surface poten t ia l  

Space 
~. 

~ 

Hef or O+ 

- < 106 emU3 

1 t o  5 ev 

8X105 cm/sec 

0.2 ev 

107 t o  1010 em 

Order of em 

Order of meters 

-4 t o  -0.1 v o l t s  

Laboratory 

1.0 t o  1.6~10~ cm/sec 

2 t o  3 ev 

50 em 

0.10 t o  0.13 em 

1 .9  t o  2.5  em 

-250 t o  o vol t s  

Because such large differences ex i s t  between laboratory and space conditions, 
scaling ru l e s  are  necessary for the  laboratory r e s u l t s  t o  be meaningful. A s  
w i l l  now be shown, the  Jastrow-Pearse theory allows f o r  the  easy development 
of such ru l e s .  

Since , i n  the  Jastrow-Pearse theory, the  po ten t i a l  f i e l d  i s  calculated 
independently of the  ion motion, the scaling of the  poten t ia l  d i s t r ibu t ion  
can a l so  be done independently of the scal ing of t he  ion t r a j e c t o r i e s .  
Scaling parameters for the  po ten t i a l  can be obtained from equation ( 5 ) .  This 
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second-order equation w i l l  have a solution of the  form 

where C1 acd C2 a re  constants t h a t  depend on t h e  boundary conditions 

@ = @  at R = Ro 

o = o  a t  R = w  

The dimensionless parameter 
t he  r a d i a l  distance approaches infLnity because the poten t ia l ,  9 ,  approaches 
zero more rapidly than l/r, as i s  the  case f o r  any shielded po ten t i a l .  
t he  boundary condition a t  i n f i n i t y  i s  s a t i s f i e d  f o r  spheres both i n  space and 
i n  the  laboratory, and the  constants C 1  and C 2  depend only on the  surface 
parameters Do and Ro. Equation ( 7 )  can then be wri t ten 

(D (as defined by eq. 4 ( a ) )  w i l l  approach zero as 

Hence, 

and the  poten t ia l  d i s t r ibu t ion  around any two spheres i s  geometrically 
s i m i l a r ,  provided (Do and R, are  iden t i ca l .  The quant i t ies  (Do and Ro a re ,  
therefore ,  scal ing parameters as are  any two combinations of these parameters. 
We choose t o  take 
since these forms have simple physical in te rpre ta t ions .  The f i r s t  parameter 
r e l a t e s  a charac te r i s t ic  length of the  sphere, namely i t s  radius,  t o  t he  
Debye radius,  AD, which i s  a charac te r i s t ic  length of t he  plasma. The second 
parameter i s  the  r a t i o  of the  sphere surface poten t ia l  t o  t he  average thermal 
energy of t he  electrons.  Since electrons are  repelled by the  surface poten- 
t i a l ,  t h i s  parameter determines the  depth of penetration of the  average 
electron in to  the  sheath. 

Ro = a/AD and (Do/Ro = ecpo/kTe as the  scaling parameters 

The scaling parameter f o r  t he  ion-trajectory calculat ion comes d i r ec t ly  
from the  Lagrangian equations of motion for a charged pa r t i c l e  i n  a spheri-  
ca l ly  symmetric po ten t ia l  f i e l d .  
integrat ion,  

From reference 14 one f inds ,  a f t e r  t he  f i rs t  

Since i s  already scaled, equation (8) provides scaling i n  units of body 
r a d i i ,  provided ecpo/E i s  f ixed in  both systems. Thus, f o r  two systems t o  
be comparable it i s  necessary t h a t  
systems. 

0 

(Do, Roy and ecpo/E a l l  be the  same i n  both 

An example of comparable conditions i n  space and i n  the  laboratory i s  
shown i n  the  following l i s t  f o r  a s a t e l l i t e  a t  1000 km i n  an O+ atmosphere: 
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AD , 

0.13 

2.6 

C' ~ 
RO 

10 

10 
~ -_ 

The three  parameters scale the  behavior of t he  ions t o  t he  point of 
impact with the  s a t e l l i t e  surface.  Up t o  t h a t  point t h e  f a c t  t h a t  t he  labora- 
t o ry  system contains Hg' and the  space system some other ion i s  not important 
i n  the  Jastrow-Pearse theory, provided the  scal ing parameters are  the  same 
i n  both systems. The momentum t r ans fe r  does depend on t h e  ion-surface system, 
but the  system becomes unimportant when the  assumption i s  made t h a t  the ion 
momentum i s  completely absorbed, since then the  drag depends only on the  
impact parameter pg of the  grazing ions (eq.  ( 6 ) ) .  

APPARATUS AND PROCEDURES 

Plasma Apparatus 

The plasma apparatus ( f i g s .  5, 6, and 7) provides a singly ionized 
mercury plasma t h a t  i s  directed toward the  model at  an energy variable 
between about 60 and 250 ev. A t  65 ev the  ve loc i ty  of mercury ions i s  
8X105 cm/sec, or about ea r th  s a t e l l i t e  veloci ty .  The density of t he  streaming 
beam i s  10' ions/cm3. The background mercury pressure is  regulated by pumping 
and by cooling with a Freon 12 re f r igera t ion  system t o  keep the  mean-free path 
about 50 em so t h a t  the  models a re  i n  free-molecule flow. 

The discharge i s  s t a r t ed  by a high-voltage pulse t o  the ign i t e r  (see 
f i g .  5 ) .  The arc i s  sustained by the  auxi l ia ry  anode which operates about 
12 v o l t s  posi t ive with respect t o  the grounded mercury pool. Electrons from 
the  arc  are  accelerated toward the  main anode which normally operates about 
27 v o l t s  pos i t ive .  Since the  electron energy i s  near the  optimum f o r  singly 
ionizing mercury but below the  second ionizat ion poten t ia l ,  a thermal plasma 
of singly ionized mercury ions i s  formed. The mesh i s  operated a t  a negative 
po ten t i a l  which depends on the ion energy desired.  The negative po ten t i a l  
accelerates  t he  ions but re ta rds  the  electrons so t h a t  an electron-def ic ien t  
sheath i s  formed. The mesh openings a re  s m a l l  compared t o  the  sheath thick- 
ness so t h a t  the  sheath boundary i s  e s sen t i a l ly  planar and the  ions are  accel-  
erated p a r a l l e l  t o  the  ax i s .  Upstream of the  mesh t h e  plasma f l o a t s  a t  nearly 
the  main anode po ten t i a l  so t h a t  the  difference between main anode and mesh 
poten t ia l s  determines the  energy of the  ions.  To minimize beam divergence due 
t o  mutual repulsion of the ions, e lectrons a re  introduced into the  stream f r o m  
a tungsten wire emit ter  j u s t  downstream of the  mesh. 

10 



It w a s  discovered from force measurement r e s u l t s  t h a t  a s ignif icant  
portion of the  force on models i n  t h i s  system w a s  due t o  a component of high 
veloci ty  neut ra l  atoms i n  the beam. To correct f o r  t h i s  neut ra l  component a 
s e t  of ion def lec tors  w a s  introduced which could be charged e l e c t r i c a l l y  t o  
f i l t e r  out the  ion and electron component . Then the  force due t o  the neut ra l  
component could be measured and applied as a t a r e  correction t o  the  t o t a l  
force t o  obtain the  forces  due t o  ions.  The ion def lec tors  consist  of t h i n  
s t r i p s  of s t e e l  shimstock, 2 em wide and spaced 0 .6  em apa r t .  
def lec tors  a re  uncharged, a l l  elements are  connected t o  the  mesh t o  create  
minimum e f fec t  on the  plasma flow. When the  def lec tors  a re  charged, a l te rna te  
elements a re  a t  -130 v o l t s  with respect t o  the  other half of the elements 
which a re  a t  mesh po ten t i a l .  The resu l t ing  po ten t i a l  gradient def lec ts  the  
charged p a r t i c l e s  and reduces the  ion current detected by probes at the  model 
posi t ion t o  l e s s  than 5 percent of t h a t  detected when the  def lec tors  are  
uncharged. To determine the  e f f ec t  of the  ion def lec tors  on the  plasma, 
measurements were made, with the  def lec tors  both charged and uncharged, of 
t he  ion current t o  a Langmuir probe placed i n  the  plasma immediately upstream 
of t he  def lec tors .  No s ign i f icant  differences were noted. This behavior 
would be expected, since a plasma generally assumes the  most posi t ive boundary 
poten t ia l ,  and since the  most pos i t ive  boundary w a s  maintained at mesh poten- 
t i a l  f o r  both the  charged and uncharged modes of ion def lector  operation. 

When the 

Plasma Surveys 

The plasma beam w a s  surveyed with t w o  instruments. The r e l a t ive  density 
d is t r ibu t ions  i n  t h e  beam were studied with Langmuir probes. The energy 
spectrum of the  ions and a l so  the  r e l a t ive  density d is t r ibu t ions  were de te r -  
mined by a Faraday cage ( f i g .  8 ) .  The gr id  i s  operated a t  a negative poten- 
t i a l  t o  repe l  t he  electrons and the  p l a t e  i s  operated a t  a var iable  posi t ive 
po ten t i a l  with respect t o  the  mesh. The energy spectrum of the  ion beam i s  
determined f rom t h e  curve of p l a t e  current versus re tarding po ten t i a l .  Typ- 
i c a l  curves are  shown in  f igure  9 f o r  mesh accelerating voltages of 120 and 
210. The curves are  f a i r l y  f l a t  over the  lower voltage range because most of 
the  ions are  suf f ic ien t ly  energetic t o  overcome these retarding po ten t i a l s .  
A t  higher voltages t h e  current f a l l s  off rapidly t o  zero at  retarding poten- 
t i a l s  t h a t  exceed the  energy of the  most energetic ions.  The voltage f o r  
half-maximum current indicated on the curves i s  taken as t h e  average energy of 
the  ions.  Figure 10 shows the  r a d i a l  var ia t ion  of t he  average ion energy as 
determined from curves similar t o  those of f igure 9 .  Radial ion density 
surveys a re  shown i n  f igure  11. The data  a re  normalized by the  density a t  the  
center of the  t e s t  sect ion.  The indicated core diameter, which i s  about twice 
the  maximum model diameter, i s  defined as the diameter of t he  cy l indr ica l  
section of t he  beam within which the  density d i f f e r s  from the  average density 
by l e s s  than k 5  percent.  

The average ion densi ty  a t  the  model i s  obta,ined from measurements with 
the  movable concentric r ing  d isk  shown in  f igure  12. The d isk  w a s  made by 
cementing an aluminum f o i l  t o  an insulat ing background and scribing a t h i n  
c i r cu la r  cut i n  the  f o i l  t o  separate the  two segments e l e c t r i c a l l y .  Separate 
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conductors connected both inner and outer surfaces t o  a common power supply, 
but only the  current from the  center disk w a s  measured. 
allowed current col lect ion without edge e f f e c t s .  The charac te r i s t ic  curve f o r  
t he  center element of t he  disk probe i s  shown i n  f igure  l 2 ( b ) .  A s  the  disk 
po ten t i a l  i s  reduced from 0 t o  -50 v o l t s  more and more of the  electrons a re  
repel led.  Between -50 and -150 v o l t s  t he  d isk  current i s  insensi t ive t o  disk 
poten t ia l ,  a r e s u l t  indicative of nearly one-dimensional f l o w  t o  the  center 
d i sk .  
as the  edge e f f ec t  s p i l l s  over t o  the  center d i sk .  In  a manner consistent 
with Langmuir probe techniques, the  ion current t o  the  disk f o r  t he  undis- 
turbed plasma i s  taken as the  linear extrapolation t o  zero poten t ia l  of the  
one-dimensional portion of the  charac te r i s t ic  curve. Then the  average ion 
number density i s  given by the  r e l a t ion  

This arrangement 

Final ly ,  f o r  po ten t ia l s  below -150 v o l t s  t he  current begins t o  increase 

i 
ni = eviA 

where A i s  the  area of the  center disk,  i the  measured ion current,  and 
v i  t he  ion ve loc i ty  as determined from Faraday cage charac te r i s t ic  curves. 

Microbalance 

Drag of t he  spherical  models w a s  measured by means of the  quartz-fiber 
to rs ion  microbalance shown i n  f igure  13 .  Primary design requirements were 
t h a t  the  balance be capable of (1) supporting a 2-gram model, (2 )  remotely 
measuring drag forces  i n  the  vacuum t e s t  chamber from zero t o  several  m i l l i -  
grams, and ( 3 )  providing an e l e c t r i c a l  connection f o r  maintaining a poten t ia l  
on the  model surface.  

The tors ion  element was a quartz f i b e r  about 0.006 em in  diameter and 
18 em long which was fused t o  larger  quartz members a t  each end. 
end w a s  fastened within a s t e e l  shaf t  which passed through an O-ring sea l  i n  
the supporting top  p l a t e  and w a s  connected by a 12O:l gear t r a i n  t o  a manually 
turned counter. The lower end of the  tors ion  f i b e r  w a s  fused t o  a balance 
crossarm assembly made of 1-mm-diameter quartz rod.  
opposed crossarms had bayonet type e l e c t r i c a l  connectors f o r  attaching the 
model and counterweight. 
model connector t o  the  center of the  balance a r m ,  from which a f i n e r  wire 
led t o  a vacuum-sealed connector through the  upper vacuum p l a t e .  Extraneous 
torque due t o  s t i f f n e s s  of t h i s  wire w a s  made negl igible  by employing a slack 
tungsten wire 0.0004 em in  diameter and several  centimeters long t o  make the  
connection upward f romthe  center of the  balance a r m .  

The upper 

Two diametrically 

An insulated e l e c t r i c a l  lead w a s  brought from the  

From the v e r t i c a l  rod below the  crossarm assembly, a horizontal  wire 
wheel w a s  suspended in to  a small pan of diffusion-pump o i l  t o  provide the 
required damping of t o r s iona l  o sc i l l a t ions  during drag measurements. The 
s t a in l e s s  s t e e l  balance frame, attached t o  the  s t e e l  top  p l a t e ,  supported the  
o i l  damper pan and two worm-and-screw mechanisms f o r  caging the crossarms 
when the  balance w a s  adjusted or models changed. 
f i g .  13) extending from the frame protected the  balance arm from aerodynamic 

A shield (not shown i n  
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t a r e  forces ,  although generally these t a r e s  were s m a l l  compared with the  
model drag. Drag readings were made with the  balance in s t a l l ed  i n  such a 
posi t ion t h a t  the  plane through the  model center and the  tors ion  f i b e r  w a s  
normal t o  the  axis of the  plasma stream. To n u l l  the balance, the  upper end 
of the  quartz f i b e r  w a s  turned by the  geared ex terna l  counter u n t i l  a re fer -  
ence point on the counterweight made small osc i l l a t ions  centered on a 
v e r t i c a l  h a i r l i n e .  

The microbalance w a s  ca l ibra ted  t o  r e l a t e  increments i n  counter reading 
t o  increments i n  drag fo rce .  The ca l ibra t ion  w a s  f irst  made by a gravity- 
loading method, with the  tors ion  f i b e r  held i n  tension by a lower quartz 
f i b e r  of 0.0025-cm diameter which permitted the  empty balance t o  be turned 
with the  tors ion  f i b e r  hor izonta l .  With the  balance a r m  i n  a horizontal  
posi t ion,  the  balance w a s  nulled using t h e  f i l a r  microscope and the  counter 
reading w a s  recorded. This procedure w a s  repeated f o r  each of several  known 
weights applied at  a known radius,  and the  resu l t ing  ca l ibra t ion  curve w a s  
found t o  be l i nea r  over t he  e n t i r e  range of 53  milligrams. The lower f i b e r  
had much l e s s  t o r s iona l  s t i f f n e s s  than the  upper f i b e r  and w a s  returned t o  
i t s  i n i t i a l  posi t ion and torque a t  each n u l l  reading, hence did not contribute 
any torque t o  the  ca l ib ra t ion .  From t h i s  basic determination of tors ion-  
f i b e r  st  i f  fne ss , t he  ca l ibra t ion  of counter reading against  drag i n  micrograms 
could be calculated f o r  any model lever a r m .  

A second ca l ibra t ion  method w a s  developed which made use of the  simple 
harmonic motion of t he  balance swinging undamped from the upper tors ion  f i b e r .  
For the  balance beam making s m a l l  t o r s iona l  osc i l la t ions ,  t he  def lect ion,  a, 
per uni t  torque i s  re la ted  t o  t he  period, P1, and the  moment of i n e r t i a ,  11, 
i n  the  following manner: 

The value of 11 i s  only known approximately, but i f  the  moment of i n e r t i a  i s  
increased by a known amount, t h i s  d i f f i c u l t y  can be circumvented. Adding a 
s m a l l .  m a s s ,  m2, symmetrically (near t he  model and counterweight posi t ions)  a t  
a known lever a r m ,  2 ,  increases t h e  moment of i n e r t i a  t o  

I n  the  increased period of o sc i l l a t ion ,  P2, the  same deflect ion per un i t  
torque i s  now 

D 2  

Use of equations (9 )  and (11) gives the  r e s u l t  i n  
as 

(11) 

e a s i l y  measured quant i t ies  

(12) 



From t h i s  value of 
force on any model, when the  model's e f f ec t ive  lever  a r m  and the  counter gear 
r a t i o  a re  known. The balance ca l ibra t ion  obtained by the  swing-period method 
checked within 51-1/2 percent with t h a t  obtained by t h e  dead-weight method 
and, because of i t s  grea te r  convenience, t he  swing method w a s  employed f o r  the  
periodic ca l ibra t ions  throughout t he  t e s t s .  The ca l ibra t ions  were considered 
t o  be repeatable within t2 percent, and the  bes t  precis ion of an individual 
drag reading w a s  about 2 micrograms. 

a/Tq the  balance counter reading i s  e a s i l y  r e l a t ed  t o  

Mode Is 

The measurements and the  experimental f a c i l i t i e s  required t h a t  the  models 
be spherical ,  have a diameter l e s s  than 3 em, weigh l e s s  than 2 grams, have a 
conducting surface,  and be eas i ly  connected mechanically and e l e c t r i c a l l y  t o  
the  balance. These requirements were met by models constructed from hollow 
spheres of g l a s s .  A gold f i lm  w a s  vacuum deposited on the  surface and made 
e l e c t r i c a l  contact with a connector f ixed t o  the  model. Sliding t h i s  connec- 
t o r  onto the  matching connector on the  balance crossarm therefore  served both 
t o  support t he  model and t o  make the  e l e c t r i c a l  contact required t o  control  
t he  surface po ten t i a l  ex te rna l ly .  This support w a s  made s m a l l  i n  comparison 
t o  the  model s ize  t o  minimize in te rac t ion  with the  wake. Spherical models of 
1.9- and 2.5-cm diameter were employed, each having a matching cy l indr ica l  
brass  counterweight. 

Experimental Procedure 

Measurements were made of the  drag on spherical  models as the model 
po ten t i a l  r e l a t ive  t o  the  plasma was var ied.  
po ten t i a l  w a s  ac tua l ly  referred t o  the mesh po ten t i a l ,  inasmuch as the  plasma 
po ten t i a l  d i f fe red  only a few percent from the  mesh po ten t i a l  so  t h a t  re fer -  
ence t o  mesh po ten t i a l  ra ther  than plasma po ten t i a l  created only a s m a l l  e r ror .  

For convenience, the  surface 

The t o t a l  drag measured consisted of t he  drag due t o  the  neu t r a l  atoms 
as wel l  as the  drag of the  ions.  The neu t r a l  drag component was determined 
and applied as a t a r e  correct ion as described i n  the  sect ion on plasma appa- 
r a t u s .  A t y p i c a l  tes t  procedure i s  as follows: (1) The ion def lec tors  were 
charged so  t h a t  only the  neu t r a l  flow reached the  models, and the  balance w a s  
nul led.  
the  def lec tors  t o  allow the  ions t o  a l so  reach the  model, and the  balance w a s  
again nul led .  The increment i n  force i s  t h e  zero-charge ion drag.  
model po ten t i a l  w a s  increased i n  s teps  and the  balance w a s  nulled a t  each 
s t ep .  
ments with the  model charged and the  model uncharged. 
t he  difference between two measurements minimized e r r o r s  due t o  a s m a l l ,  con- 
s t an t  radiometer force on the  models. To assure the  constancy of the  

( 2 )  With the  model a t  zero po ten t i a l ,  t he  charge was removed from 

(3 )  The 

The e l e c t r i c  drag w a s  obtained as the  difference between the  measure- 
This technique of using 



radiometer force,  the  equipment w a s  allowed t o  operate f o r  about an hour p r io r  
t o  each run so that  the  system could approach thermal equilibrium. 

To check f o r  possible e r ro r s  due t o  s t a t i c  a t t r ac t ion  e f f ec t s ,  e l e c t r i c  
po ten t ia l s  were applied between the  model and the  balance frame with the  d i s -  
charge off but w i t h  the  t e s t  section under vacuum. No s ign i f icant  forces  
were observed u n t i l  po ten t ia l s  greater  than those used i n  the  t e s t  were 
applied.  With t h e  plasma flowing, t he  e f f ec t  of s t a t i c  f i e l d s  should have 
been even l e s s ,  since a plasma fo rms  sheaths t h a t  tend t o  shield any s t a t i c  
charges. 

The range of var iables  covered w a s  d ic ta ted by the  plasma beam character-  
i s t i c s  and the capabi l i ty  of t he  balance. It w a s  desirable  t o  have the  models 
as large as possible,  both t o  decrease the  r a t i o  of support tare t o  model drag 
and t o  produce forces  t h a t  were large enough t o  measure accurately.  The ba l -  
ance load capabi l i ty  and the  usable plasma-beam diameter l imited the  maximum 
diameter. Model diameters of 2 .5  and 1.9 em were chosen as reasonable com- 
promises. The ion energy range of 60 t o  250 electron v o l t s  w a s  d ic ta ted by 
the capabi l i ty  of the  plasma apparatus. The model po ten t ia l s  were then deter-  
mined by the  scaling requirement t h a t  ecpo/E be f ixed .  Assuming values of 
ecpo/E 
values between -250 and 0 v o l t s  f o r  yo. With such large magnitudes f o r  
together with electron thermal energies of the order of 1 t o  3 ev, the  magni- 
tude of the scaling parameter, ecpo/kTe, i s  much greater  than uni ty .  
greater  than unity are  r e a l i s t i c  f o r  s a t e l l i t e  conditions for which e l e c t r i c  
drag i s  l i ke ly  t o  be la rge .  

between -1 and 0 f o r  t he  s a t e l l i t e  condition resul ted i n  laboratory 

'Po 

Values 

RESULTS AND DISCUSSION 

For the  purpose of in te rpre t ing  the  r e s u l t s  of t h i s  invest igat ion,  it 
has been assumed t h a t  a l l  the  momentum of the  ions i s  absorbed by the  model 
surfaces on impact. For extremely clean surfaces, t h i s  would not necessarily 
be a good assumption ( r e f .  l7), but for the  p rac t i ca l  surfaces used i n  the 
present invest igat ion,  the  assumption i s  reasonable ( see  f i g .  14). D a t a  are 
presented for the  drag on a f l a t  p l a t e  due t o  the  normal impingement of mer- 
cury ions.  The ordinate i s  the  t o t a l  measured drag due t o  both  impact, DI, 
and r eco i l ,  DR, compared t o  an impact-only drag computed from the  knovn ion 
f l u x  t o  the  t a r g e t .  Calculated values of (DI + DR)/DI are  presented f o r  both 
f u l l  momentum accommodation (DR = 0 )  and zero accommodation. The experimental 
drag d i f f e r s  from t h a t  of the  complete momentum accommodation condition by, at 
most ,  15 percent.  
ponent, DR, i s  primarily due t o  sput ter ing of surface mater ia l  ra ther  than 
r e f l ec t ion  of incident p a r t i c l e s .  

Results of reference 18 indicate  t h a t  t he  r e c o i l  drag com- 

D a t a  f o r  t he  drag of uncharged spheres are  presented i n  f igure  15. 
Again it is  apparent t h a t  t h e  da ta  are  generally within 15 t o  20 percent of 
the  complete momentum accommodation condition, DR = 0 .  Because the  primary 
purpose of t h i s  invest igat ion w a s  t o  resolve order-of-magnitude differences 
i n  published e l e c t r i c  drag theor ies ,  a 15-percent e r ro r  due t o  assuming com- 
p l e t e  accommodation f o r  estimation purposes i s  not considered s igni f icant .  A n  



i n t e re s t ing  observation t o  be made from f igure  15 i s  t h a t  the  drag of the 
uncharged sphere i s  l e s s  than t h a t  f o r  complete accommodation. A s  indicated 
by the  cross-hatched region, the drag should be grea te r  than o r  equal t o  the  
complete accommodation value f o r  any form of uniform re f l ec t ion  over the  
e n t i r e  surface, ranging from specular t o  d i f fuse  and from zero t o  f u l l  accom- 
modation. It i s  possible f o r  the  sphere drag t o  be l e s s  than the complete 
accommodation value if  the  r e f l ec t ion  cha rac t e r i s t i c s  a re  not uniform over 
the  e n t i r e  surface.  An extreme example i s  shown by the inse t  ( f i g .  15) .  The 
s i tua t ion  shown i s  designed t o  give the  minimum possible drag f o r  an uncharged 
sphere and serves t o  e s t ab l i sh  the lower l imi t  on (DI + DR)/DI. 
accommodation i s  assumed f o r  the  ions t h a t  impinge on the  inner region where 
any type of r e f l ec t ion  would contribute a pos i t ive  drag.  Specular re f lec t ion  
with zero accommodation, hence maximum magnitude of DR, i s  assumed f o r  the 
outer region where specular r e f l ec t ion  would contribute a negative fo rce .  
Although such a severe var ia t ion  of r e f l ec t ion  cha rac t e r i s t i c s  i s  not t o  be 
expected physically,  it appears from the  da t a  t h a t  a tendency e x i s t s  toward 
more specular r e f l ec t ion  from the  region of the  f r o n t a l  surface where the ion 
incidence angle i s  more than 45' from the normal t o  the surface.  

Complete 

The r e s u l t s  of t he  e lec t r ic -drag  measurements a re  presented i n  
f igures  16(a) and 16(b) ,  as the  var ia t ion  of ion drag r a t i o ,  D/Do, with energy 
r a t i o ,  -ecPo/E. 
subs tan t ia l ,  causing the  ion drag t o  approximately double when the  energy 
r a t i o  i s  increased from zero t o  uni ty .  
f i g .  3) only t h a t  of Jastrow and Pearse agrees reasonably with the  da ta  and i s  
presented f o r  comparison. The theo re t i ca l  curves shown on f igure  16 r e s u l t  
from calculat ions both f o r  the  case t h a t  considers only ion impacts and the  
case t h a t  considers both ion-impact and ion-scat ter ing contr ibut ions.  These 
are shown on f igure  16 f o r  the  two values of a/AD corresponding t o  the  two 
model s i zes  used. The addition of nonimpact ion sca t te r ing  g rea t ly  improves 
the  agreement ( t o  within 10 percent) between experiment and theory f o r  t he  
smaller sphere (a /AD = 7 . 5 ) .  
t o  place the two models about on the  border where the  nonimpact drag e f f e c t s  
become s ign i f i can t .  The much greater  e f f e c t  f o r  t he  smaller sphere i s  con- 
s i s t e n t  with a previous statement t h a t  nonimpact sca t te r ing  can become a 
dominant e f f ec t  on the drag of spheres as the r e l a t ive  sheath thickness,  &/a, 
becomes la rge .  

The e l e c t r i c  drag caused by the  surface charge i s  seen t o  be 

O f  the  three  theor ies  (shown i n  

It i s  apparent t h a t  t e s t  conditions a re  such as 

O f  the  three  scaling parameters developed i n  the  theo re t i ca l  considera- 
t i ons  section, it was possible t o  ver i fy  experimentally the  cor re la t ion  of 
only the energy-ratio parameter, -e(Po/E. 
correlated within experimental s c a t t e r  by t h i s  parameter f o r  ion energies 
between 100 and 200 electron v o l t s .  
e t e r s ,  ecPo/kTe and a/AD, f o r  correlat ing the  da ta  could not be examined exper- 
imentally because electron temperature and number densi ty  could not be 
regulated.  

Figure 16 shows t h a t  the  data  a re  

The effect iveness  of the  other  param- 

The data  of f igure  16 can be re la ted  t o  pa r t i cu la r  s a t e l l i t e  conditions 

a/AD = 10 corresponds t o  a 52-cm-diameter s a t e l l i t e  at  about 1000 km 
by thc  scaling parameters. 
having 
a l t i t u d e .  

For example, f o r  -ecPo/E = 1, the  laboratory model 

For -erpo/E = 1, the  s a t e l l i t e  po ten t i a l  would be -5 vo l t s  for an 
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0' atmosphere or -1.25 vo l t s  for a Hef atmosphere. 
the  atmosphere may be e i t h e r  predominantly owgen or predominantly helium, 
depending upon the  time of day. 
have ranged f r o m  -4 t o  -0.13 vo l t s .  

According t o  reference 12, 

Poten t ia l  measurements aboard s a t e l l i t e s  

To evaluate the  importance of e l e c t r i c  drag on s a t e l l i t e s  from the 
r e s u l t s  of t h i s  invest igat ion,  the  present r e su l t s ,  which a re  f o r  a f u l l y  
ionized plasma,must be modified t o  the  p a r t i a l l y  ionized plasma of t he  ea r th ' s  
upper atmosphere. 
t h i s  modification i s  accomplished by the  following equation: 

With the  assumption of a single species of atom and ion 

where subscript N denotes neu t r a l  p a r t i c l e s .  It i s  apparent from equa- 
t i o n  (13)  t h a t  the  importance of e l e c t r i c  drag i s  d i r ec t ly  dependent on the  
percentage ionization of t h e  atmosphere. The magnitude of the  percentage 
ionization i n  the  atmosphere has not been r e l i ab ly  established as y e t ,  but 
it tends t o  increase with increasing a l t i t u d e .  

Because the  experimental values of e l e c t r i c  drag agreed quite well  w i t h  
the  Jastrow-Pearse theory, it appeared possible tha t  systematic use of the 
machine solutions might permit formulation of an approximate equation r e l a t ing  
the e l e c t r i c  drag of spheres t o  the  scaling parameters. Such an equation 
would be much more convenient than the  machine r e s u l t s  and might provide the  
required accuracy f o r  most engineering purposes. 

A s  noted in  previous sect ions,  t he  three useful  s imi la r i ty  or scal ing 
parameters were a/AD, -eqo/E, and -eqo/kT,. These parameters, or equivalent 
combinations, are  necessary f o r  f u l l y  scaling both the  po ten t i a l  f i e l d  about 
the  charged body and the ion t r a j e c t o r i e s  through the  po ten t i a l  f i e l d .  

Values of D/Do, the  r a t i o  of drag of the  charged body t o  tha t  of t he  
uncharged body, generally were approximated f o r  both the  experimental and the  
corresponding machine-calculated r e s u l t s  by the  r e l a t ion  

Both c l a s s i c a l  sca t te r ing  theory and the  machine calculat ions using Jastrow's 
e lectr ic-drag theory indicate t h a t  equation (14) defines the  upper l i m i t  f o r  
the  drag of impacting p a r t i c l e s  when the  r e l a t ive  thickness of t he  ion sheath 
&/a i s  su f f i c i en t ly  large t h a t  t he  po ten t i a l  f i e l d  may be regarded as essen- 
t i a l l y  unshielded. For progressively smaller r e l a t ive  sheath thicknesses,  
D/Do might reasonably be expected t o  decrease toward uni ty  as 

where F and p are  empirical  constants or functions of t he  scal ing parameters. 
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It is  possible to r e l a t e  6/a to t he  scal ing parameters by the  closed- 
form solution mentioned i n  reference 3 f o r  t h e  e l e c t r i c  po ten t i a l  i n  a f i n i t e  
spherical  sheath.  Upon carrying out t h i s  solut ion with the  assumption t h a t  
no electrons penetrate  t he  sheath and t h a t  t he  negative surface charge i s  
exact ly  balanced by t h e  posi t ive ion charges i n  a sheath of f i n i t e  thickness, 
6, an implici t  equation f o r  6/a i s  obtained as 

-ecPo 

2mea 
2 

using any consistent un i t s .  When equation (16) i s  
the  value of i s  given very wel l  over a range 
the  r e l a t ion  

S/a 
p lo t ted  logarithmic a l l y  , 
from 0.01 5 6/a < 1 . 0  by - 

where -eV0 i s  i n  e lectron v o l t s  and na2 i s  i n  em-’. Interest ingly,  the 
parameter (naz/-ecPo) i s  proportional to (a/AD)2/( -ecpo/kTe) , t w o  of the  scal ing 
parameters previously derived. Over p rac t i ca l  ranges of a l l  the  scal ing 
parameters, sample machine computations showed the  e f f ec t s  of var ia t ions  i n  
-ecpo/kTe and a/hD 
and (-e(Po/E) were held constant.  
was reduced t o  a function of the  two parameters (-e(Po/E) and (naz/-ecpo). 
Machine calculat ions of e l e c t r i c  drag were car r ied  out f o r  several  selected 
values of each at  a f ixed value of (-@o/kTe) . Analysis of the r e s u l t s  
indicated t h a t  over p r a c t i c a l  ranges’, t he  empirical  f ac to r  F i n  equa- 
t i o n  (15) had a value of F = 3(-ecp0/E)-1.0 and the  index had the  value 
p = 1.06. 
0 < - -eVo/E - < 1 and 0 5 8/a 5 1 then i s  

to be s m a l l  when the  var ia t ions  were such t h a t  (na2/-ecpo) 
For p r a c t i c a l  purposes then, e l e c t r i c  drag 

A su i tab le  approximate equation f o r  impact drag over the  ranges 

The var ia t ions  of drag r a t i o ,  D/Do, with energy r a t i o  (-ecpo/E) given by 
equation (18) are  shown graphically i n  f igure  17 f o r  several  values of 
(naz/-ecpo) together with the  machine-calculated poin ts .  
calculated values of 
(na2/-eyo). A s  t he  value of 8/a increases toward unity,  the  drag r a t i o  f o r  
impacting ions approaches the  l imit ing value given by equation ( 1 4 ) .  Marks 
a l so  indicate on the  same v e r t i c a l  scale the  values of (1 + 6/a)2, represent- 
ing the  upper l i m i t  of impacting ion drag imposed by the  f i n i t e  sheath when 
t h e  magnitude of (-ecpo/E) i s  suf f ic ien t ly  large t h a t  a l l  ions entering the  
sheath impact upon the  sphere. The values of (1 + 6/a)‘ calculated by the 
simple sheath theory agree well  with the  asymptotic r e su l t s ,  f o r  large 
(-ecp /E) , of the  exact machine computation of t he  Jastrow-Pearse theory, and 
one might conclude f rom t h i s  agreement t h a t  t he  simplified closed-form sheath 
analysis  may be sa t i s fac tory  f o r  some purposes. It i s  a l so  of i n t e re s t  t h a t  

A l s o  shown are  the  
6/a corresponding to each value of t he  parameter 

0 
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the  value of D/Do as given by equation (18) i s  almost exactly equal t o  the  
value (D/Do = 1.10) found by Kohl and Wood f o r  the  model described i n  r e fe r -  
ence 5 .  
t he  section on electr ic-drag theor ies .  

This agreement i s  t o  be expected on the  bas i s  of t he  discussion i n  

CONCLUDING REMARKS 

Experimental r e s u l t s  of t h i s  invest igat ion have shown t h a t  e l e c t r i c  drag 
can be a s ignif icant  f r ac t ion  of the  t o t a l  drag of a s a t e l l i t e  i f  both the  
magnitude of t h e  s a t e l l i t e  po ten t i a l  and the  percentage ionization of the  
atmosphere a re  su f f i c i en t ly  l a rge .  E lec t r ic  drag i s  more l i ke ly  t o  be s igni f -  
icant  f o r  s m a l l  s a t e l l i t e s  than f o r  large s a t e l l i t e s  because of the  greater  
r a t i o  of sheath thickness t o  sa te l l i te  radius .  The r e s u l t s  have a l so  shown 
t h a t  theor ies  must include both d i r ec t  ion-surface co l l i s ions  and po ten t i a l  
shielding e f f ec t s  t o  give r e s u l t s  t h a t  cor re la te  with experiment. The 
Jastrow-Pearse theory, which considers both of these f ac to r s ,  estimates the  
present experimental r e s u l t s  t o  within 10 percent.  

Scaling parameters developed from the  Jastrow-Pearse theory a l l o w  the  
extension of the  present experimental r e s u l t s  t o  s a t e l l i t e  conditions.  For 
example, proper select ion of ion energy and surface po ten t i a l  can make the  
2.5-em-diameter sphere i n  the  laboratory equivalent t o  a 52-em-diameter 
s a t e l l i t e  a t  1000 km a l t i t u d e .  In  t h i s  example , t he  e f f ec t  of surface charge 
i s  suf f ic ien t  t o  double the  ion drag as the  r a t i o  of surface e l e c t r i c  poten- 
t i a l t o  i n i t i a l  ion k ine t ic  energy i s  changed from 0 t o  -1. The scaling 
parameters and an ex is t ing  theory are used as guides i n  developing an approx- 
imate equation by which e l e c t r i c  drag may be estimated t o  reasonable accuracy 
over scal ing parameter ranges of p r a c t i c a l  i n t e r e s t .  

Ames Research Center 
National Aeronautics and Space Administrat ion 

Moffett Field,  Calif ., Oct. 12, 1964 
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Figure 1. - Conceptual drawing of s a t e l l i t e  environment. 
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Figure 2.- Effect of s a t e l l i t e  charge on ion t r a j ec to r i e s .  
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Figure 3 .- Comparison of e lectr ic-drag theor ies  f o r  a t y p i c a l  sa te l l i t e .  
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Figure 4.- Typical ion t r a j e c t o r i e s  f o r  model of t h i s  investigation; 'p, = -100 v, E = 100 ev, 
a = 1.25 em. 
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Figure 5 .  - Broad-beam plasma apparatus. 
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Figure 6 . -  Two views of broad-beam plasma apparatus.  
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Figure 7.- Block c i rcu i t  diagram of plasma discharge. 
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Figure 8.- Cross section and e l e c t r i c a l  c i r c u i t  of Faraday cage. 



( a )  Mesh poten t ia l  = 120 v o l t s .  

Plate voltage , v 

(b)  Mesh poten t ia l  = 210 v o l t s .  

Figure 9.- Ion energy spectrum from Faraday cage. 
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Figure 16. - Experimental e l e c t r i c  drag and Jastrow-Pearse theory. 
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Figure 17.- Ion sphere drag as computed by Jastrow-Pearse theory and by 
approximate equation. 
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